

Seminar Presented in Japan August 2005

Simultaneous Vibration and Noise Reduction in Rotorcraft -Practical Implementation Issues

Li Liu PhD Candidate **Peretz P. Friedmann** François-Xavier Bagnoud Professor Dan Patt

Postdoctoral Researcher

Department of Aerospace Engineering University of Michigan Ann Arbor, MI 48109-2140

* This research was supported by the FXB Center for Rotary and Fixed Wing Air Vehicle Design, and by ARO grant, 02-1-0202 with Dr. Gary Anderson as grant monitor.

Introduction: Active Control

Active control of vibration

- Actively controlled trailing edge flaps (ACF)
 - No adverse effect on helicopter airworthiness
 - □ Lower power consumption than HHC or IBC

Blade-vortex interaction (BVI)

Introduction: History of the ACF

- Millott and Friedmann (1994)
 - elastic blade model and quasisteady Theodorsen aerodynamics
- Milgram and Chopra (1995)
 - compressible unsteady aerodynamic model (Leishman)
- Myrtle and Friedmann (1997)
 - new compressible unsteady aerodynamics (RFA Aerodynamics)
- de Terlizzi and Friedmann (1999)
 - BVI vibration reduction
- Depailler and Friedmann (2001)
 - reduce vibrations due to dynamic stall
- Experimental studies (open loop and closed-loop)
 - □ Straub (1995), Fulton and Ormiston(1998), Koratkar and Chopra (2002)
- Boeing Smart Material Actuated Rotor Technology (SMART)
 - □ MD-900 rotor with piezoelectrically actuated flap
 - □ Whirl tower tests performed (Oct. 2003)
- BK117/EC145 with three identical adjacent piezoelectrically actuated flaps is scheduled to fly in 2005

Introduction: Noise Control

HHC and IBC algorithms developed for vibration reduction have been adapted for noise reduction

Michigan Engineering

- **HHC** For BVI Noise Reduction:
 - HART (1995)
 wind tunnel test, scaled BO-105, open loop, 5-6dB reduction
- **IBC** For BVI Noise Reduction:
 - Wind Tunnel
 - BO-105, NASA Ames 40x80' (Jacklin,1995), open loop, 5-12dB reduction
 - UH-60, NASA Ames 40x80' (Jacklin,2002), open loop, 5-12dB reduction
 - Flight Test
 - BO-105 (Bebesel, et al. 2001,2002), open and closed loop, 4-6dB reduction

Introduction: Simultaneous Control

- Brooks et al. (1990) observed increased vibration when using open-loop HHC for noise reduction in the NASA Langley TDT.
- HART with 3/rev HHC
 - □ 6dB noise reduction, 100% increase in vibratory loads
 - □ 30% vibration reduction, 3dB noise increase
- NASA Ames BO-105 test with 5/rev IBC
 - □ Advancing side BVI noise reduced by 4dB
 - □ Vibratory loads increase by 150%
- Flight Tests of BO-105 with 2/rev IBC
 - 6dB Noise reduction
 - □ 150% increase in vibratory loads
- Limited cases of simultaneous reduction

Objectives of the Present Study

- Explore the potential of BVI noise reduction as well as simultaneous vibration and noise reduction using the ACF approach.
- Determine and compare the effectiveness of the ACF in the closed loop mode for noise and vibration reduction on two different rotor configurations, namely, a four-bladed MBB BO-105 hingeless rotor and a five-bladed MD-900 bearingless rotor.
- Evaluate the effectiveness of passive methods on the vibration and noise reduction using advanced geometry tips with anhedral and dihedral, and compare them with the active approach.

Examine a number of practical implementation issues associated with the ACF system, such as the effects of practical saturation limits, constant and 1/rev pitch inputs, and flap overhang.

Model: Structural Dynamics

■ Isotropic Blade Model (Millott & Friedmann, 1995)

- Coupled flap-lag-torsion dynamics, with moderate deflections
- Blade discretization using the Global Galerkin method
- □ Free vibration rotating modes (3 flap, 2 lead-lag, 2 torsion)
- MBB BO-105 hingeless rotor

Composite Blade Model (Yuan & Friedmann, 1995)

- Transverse shear deformation, cross-sectional warping, elastic coupling
- □ Finite element discretization
- Modal reduction based on 8 coupled rotating modes
- □ Swept tips (tip sweep and dihedral)
- MD-900 bearingless rotor
- Active Flap incorporated through modification of inertia and aerodynamic loads (assuming structural properties remain unchanged)

Model: RFA Aerodynamics

- Blade sectional loads calculated using rational function approximation (RFA) (Myrtle & Friedmann, 1997)
 - accounts for compressibility, unsteady effects, and time varying freestream effects
 - accounts for the presence of the flap
- Extended for the computation of chordwise pressure distribution

Model: Free Wake

- Wake analysis extracted from CAMRAD/JA (de Terlizzi & Friedmann, 1998)
- Free wake geometry includes distortion of the wake due to wake self-induced velocity (Scully, 1975)
- Fundamental wake resolution restrictions removed
 - □ 5° azimuthal resolution
- Dual vortex line model with negative blade tip loading
 - experimental evidence (HART)
 - interaction with tip vortices is accounted for

Michigan Engineering

Model: Solution Procedure

Active Control: Algorithm

Conventional HHC

	Simple,	one-step	convergence
--	---------	----------	-------------

Relaxed HHC

(Patt, Liu & Friedmann, AIAA 2004-1948)

- Control update is scaled by a relaxation factor
- Improved robustness, slower convergence

Adaptive HHC

Online identification updates

Saturation Limits on Flap Deflection:

$$4^{\circ} \le \delta \le 4^{\circ} \qquad R = c_{wu} I$$
$$\begin{cases} |\delta| > 4^{\circ}: & \text{Increase } C_{wu} \\ |\delta| < 4^{\circ}: & \text{Decrease } C_{wu} \end{cases}$$

(Cribbs & Friedmann, 2001)

Cost Function:
$$J = \mathbf{z}_k^{\mathrm{T}} \mathbf{Q} \mathbf{z}_k + \mathbf{u}_k^{\mathrm{T}} \mathbf{R} \mathbf{u}_k$$

Vibration Reduction:

$$\mathbf{z}_{VR} = \{F_{HX}, F_{HY}, F_{HZ}, M_{HX}, M_{HY}, M_{HZ}\}^{T}$$

Noise Reduction:

$$\mathbf{Z}_{NR} = \left\{ N_{H\,06}, N_{H\,07}, \dots, N_{H\,17} \right\}^{T}$$

Simultaneous Reduction:

$$\mathbf{z}_{SR} = \left\{ \mathbf{z}_{VR}, \mathbf{z}_{NR} \right\}^{T}$$

Harmonic Flap Deflection:

- Four-bladed BO-105
 2/rev, 3/rev, 4/rev, 5/rev
- Five-bladed MD-900
 2/rev, 3/rev, 4/rev, 5/rev, 6/rev

$$\delta(\psi) = \sum_{N=2}^{N_{\text{max}}} [\delta_{Nc} \cos(N\psi) + \delta_{Ns} \sin(N\psi)]$$
$$\mathbf{u} = \{\delta_{Nc}, \delta_{Ns}\}^T, N=2-N_{\text{max}}$$

Model Validation: HART

HART (1995)

- Wind tunnel tests of a 40% dynamically and Mach-scaled BO-105 rotor
- BVI Noise carpet plots
 - □ Noise contour plots at 1.15R below hub
- Acoustic pressure time history

(Liu, Patt & Friedmann, 2004)

Model Validation: MD-900

- Comparison with CAMRAD II (Straub & Charles, 2001)
 - \Box Prescribed flap deflection $\delta_f = 2^{\circ} \cos(4\psi 240^{\circ})$

 Comparison of blade natural frequencies (/rev) with RCAS (Rotorcraft Comprehensive Analysis System)

	ω _{L1}	ω _{F1}	ω _{F2}	ω_{L2}	ω _{F3}	ω _{T1}	ω _{F4}	ω _{A1}
Current Simulation	0.654	1.043	2.573	3.488	4.472	5.667	7.270	25.70
RCAS	0.654	1.048	2.572	3.498	4.473	5.409	7.273	25.82

Results: Overview

MBB BO-105

- Vibration Reduction
- Noise Reduction
- Simultaneous Reduction
- □ Effects of Constant and 1/rev Pitch Inputs

MD-900

- □ Effects of Flap Overhang
- □ Vibration Reduction
- Noise Reduction
- □ Simultaneous Reduction
- □ Effects of Swept Tips
- † All results obtained with 4° saturation limits imposed

Results: MBB BO-105

Four-bladed hingeless rotor

N _b	R(m)	μ	$\Omega(\text{RPM})$	C _τ	c/R	$\theta_{\rm FP}$
4	4.91	0.15	425	0.005	0.05098	6°

- Propulsive trim
 - □ 6^o descending angle
- Single and dual servo flaps

- Active control with 4^o saturation
 - Vibration reduction
 - Noise reduction
 - □ Simultaneous reduction

Results: BO-105 Vibration Reduction

- Vibration reduction with conventional HHC algorithm
 - □ 46% reduction with single flap configuration
 - □ 86% reduction with dual flap configuration

Results: BO-105 Vibration Reduction

- Noise generation during vibration reduction
 - □ No noise increase on advancing side
 - □ 1-2dB increase on retreating side

Results: BO-105 Noise Reduction

- Noise reduction with adaptive HHC algorithm
 - □ 5-6dB reduction on advancing side
 - □ 2dB increase on retreating side

Results: BO-105 Noise Reduction

- Vibration levels during noise reduction
 - Unchanged for single flap configuration
 - 130% increase for dual flap configuration
 - Vertical shear always reduced

Results: BO-105 Simultaneous Reduction

- 3-5dB noise reduction and 40% vibration reduction
- Demonstrates the potential for simultaneous reduction
 - □ Deliberately instead of coincidently

Results: BO-105 Simultaneous Reduction

40% vibration reduction

Results: BO-105 Additional Flap Inputs

- Traditionally the flap harmonic inputs are taken to be a combination of 2-5/rev components
- The effects of constant (0/rev) and 1/rev flap harmonic inputs for BVI noise reduction are examined

Michigan Engineering

Not appear to have significant effects

Five-bladed bearingless rotor

N _b	R(m)	μ	$\Omega(\text{RPM})$	С _т	c/R	α'
5	5.16	0.20	392	0.006	0.04924	-3.5°

- Wind tunnel trim
 - □ Simulated descent condition
- Flap configuration
 - Developed in Boeing **SMART** program

- Active control with 4^o saturation
 - Vibration reduction
 - Noise reduction
 - Simultaneous reduction

Results: MD-900 Flap Overhang

Flap overhang (aerodynamic balance)

- Flap hinge moment reduced using 40% overhang
- Control power requirement reduced by an order of magnitude

Results: MD-900 Vibration Reduction

Results: MD-900 Noise Reduction

Results: MD-900 Simultaneous Reduction

- 74% reduction in vertical shear
- 1dB noise reduction
- ACF appears less effective in simultaneous reduction than in the MBB BO-105 case

Michigan Engineering

Simultaneous Reduction

10°

.5°

Results: MD-900 Passive Approach

- Advanced geometry tips
 - □ 10° sweep
 - \Box 10° dihedral (tip up)
 - □ 10° anhedral (tip down)
- Alleviation of BVI effects through increased separation distance
- BVI effects are alleviated for anhedral and enhanced for dihedral for level flight condition (de Terlizzi & Friedmann, 1999)

Results: MD-900 Swept Tip – Descent

- -3.5° tip path plane angle, simulating descending flight
- 10° dihedral
 - 40% reduction in vertical shear
- 10° anhedral
 - □ 34% increase in vertical shear
- 10° sweep
 - □ Negligible effects

Results: MD-900 Swept Tip – Level Flight

- 2° tip path plane angle, simulating level flight
- 10° dihedral
 - 50% increase in vertical shear
 - 3dB noise increase
- 10° anhedral
 - 25% reduction in vertical shear
 - 2dB noise reduction

• Agrees with the results in de Terlizzi & Friedmann, 1999

- The ACF is an effective device for vibration and BVI noise reduction in rotorcraft, for different types of rotors and different helicopter configurations.
- The effectiveness of the ACF system has been clearly demonstrated despite imposing a practical flap saturation limits of 4°.
- The addition of constant and 1/rev flap harmonic input to the harmonic content of flap deflection does not have significant effects on BVI noise reduction, for the active flap systems employed on a rotor that resembles the MBB BO-105 rotor.
- Using a substantial flap overhang is a very effective means of reducing the flap hinge moment, thus further reducing the actuation power requirement for the ACF system.
- A passive approach employing tip anhedral or dihedral is effective at alleviating the BVI effects. However, this reduction depends on the flight condition.
- The ACF provides superior vibration and BVI noise reduction compared to the passive approach.